
 
 
 
 

The Backward Art of Slowing the Spread? 
Congregation Efficiencies during COVID-19* 

 
by Casey B. Mulligan 

 
April 2021 

 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
 Were workers more likely to be infected by COVID-19 in their workplace, or outside it?  
While both economic models of the pandemic and public health policy recommendations often 
presume that the workplace is less safe, this paper seeks an answer both in micro data and 
economic theory.  The available data from schools, hospitals, nursing homes, food processing 
plants, hair stylists, and airlines show employers adopting mitigation protocols in the spring of 
2020.  Coincident with the adoption, infection rates in workplaces typically dropped from well 
above household rates to well below.  When this occurs, the sign of the disease externality from 
participating in large organizations changes from negative to positive, even while individuals 
continue to have an incentive to avoid large organizations due to the prevention costs they 
impose on members.  Rational cooperative prevention sometimes results in infectious-disease 
patterns that are opposite of predictions from classical epidemiology. 
         

 
*I appreciate financial support from the University of Chicago’s Initiative on Enabling Choice and Competition in 
Healthcare and discussions with Kevin M. Murphy, Tomas Philipson, Bob Topel, Daniel Benjamin, M. Keith Chen, 
and Troy Durie.  Ibukun C. Kalu provided time series data on infections among healthcare workers. 
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I. Introduction 
 

The spread of COVID-19 in the United States has prompted extraordinary, although often 

untested, steps by individuals and institutions to limit infections.  Schools, restaurants, 

entertainment venues, and many other places of business were required to close under the 

compelling theory that infectious diseases spread more quickly when people congregate.  More 

than a year into the pandemic, public officials were still advising their populations to “stay 

home” and paid unprecedented unemployment benefits in part to encourage home over work 

even for healthy persons.1  However, for centuries many accomplishments were achieved by 

leaving home to work and learn in teams.  As Wesley Mitchell (1912) put it, “the business 

enterprise … made possible more elaborate specialization and machinery, more perfect 

coordination of effort and greater reduction of waste than could be attained by the family.”  Is 

home also the wrong place to slow the spread?  The purpose of this paper is to assess the 

relationship between group size and private efforts to avoid infections. 

An emphasis on private incentives and prevention behaviors is the hallmark of economic 

epidemiology (Philipson and Posner 1993, Kremer 1996, Geoffard and Philipson 1997, 

Gersovitz 1999, Gersovitz and Hammer 2004, Philipson 2008), as distinct from classic 

epidemiology models of infectious disease.  Economic epidemiology contrasts individual and 

social incentives and examines how they interact with disease prevalence, but so far without 

much discussion of how individuals seeking protection might cooperate on scales smaller than 

the entire polity.  Disease prevention is an industry whose organization is a topic especially 

suitable to economic analysis. 

Economics more generally provides many results regarding voluntary associations, such 

as the theories of the firm from Viner (1932), Coase (1937) and Alchian and Demsetz (1972); 

theories of local-externality management (“clubs”) such as Buchanan and Tullock (1962) and 

 
1 In April 2021, the Canadian province of Ontario was under a stay-at-home order (Office of the Premier of Ontario 
2021).  The essential assumption that staying at home slows the spread is featured in many economic models of the 
pandemic, including Greenstone and Nigam (2020), Eichenbaum, Rebelo and Trabandt (2020), Kapicka and Rupert 
(2020) and Birinci, et al. (2021). 
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Buchanan (1965); and cooperative game theory in general (Shapley 1953, Telser 1994).  People 

voluntarily join groups outside their household, despite travel costs and other constraints a group 

imposes on its members, in part because they value the group’s management of local 

externalities and public goods.2  Even though an infectious disease would spread more rapidly in 

congregations of people who prevent the same way they do in households, the groups may be 

enough more productive at inducing prevention that the disease spreads more rapidly at home 

where there is fewer people. 

Section II of this paper extends the Viner framework to describe determinants of group 

size, prevention efforts, and their correlation with infection rates.  It assumes that, absent costly 

prevention activities, larger groups naturally have more infections per member.  At the same 

time, larger groups have greater incentives to engage in costly prevention measures, which may 

be enough to reverse the natural infection-size gradient.  In this case, individuals may 

nevertheless shift their time allocation away from large groups with low equilibrium infection 

rates toward smaller groups (such as families) with higher rates because doing so avoids costs of 

prevention.  In this case, “staying home” may have a negative externality especially when 

community prevalence is high. 

A widely-reported study of COVID-19 hospitalizations in New York in early May 2020 

found that 66 percent were patients who had been sheltering at home (Fink 2020).  Although it 

was a first clue that staying at home might not be safer, the finding can also be explained by a 

correlation between staying at home and the harm from infection or by an especially high 

fraction of New Yorkers who stayed at home.3  Sections III presents the measurement framework 

and introduces the academic studies that offer estimates of various elements of it.  Section IV 

shows how businesses and other large organizations implemented and enforced prevention 

measures ranging from mask wearing to improved ventilation to testing.  Coincident with those 

measures, per-capita transmission rates on site fell dramatically, usually to levels below 

household transmission.  Section V reviews additional types of statistical evidence that permit 

 
2 One of the group’s management techniques may be to price local elements of the externality, in which case it may 
more properly be called a “priced spillover.” 
3 Bayes’ Rule reveals that most of the hospitalized could have sheltered at home even while the relative risk of 
hospitalization is less among those sheltering at home.  If those sheltering at home had the same propensity to be 
hospitalized conditional on infection, then the relative risk of being infected for those sheltering at home would be 
essentially !!

"##$!!
"##$%
%  where s is the percentage of New Yorkers who sheltered at home. 
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comparisons of COVID-19 transmission in households, schools, and various types of businesses.  

Section VI concludes. 

 

II. Economies and Diseconomies of Scale: Theory 
Before the pandemic, the economy consisted of many voluntary organizations of various 

sizes n and types of interpersonal interactions.  The organizations include employers, large-group 

consumption activities such as concerts and sporting events, and households.  They possess 

organizational capital that helps members relate to each other and enjoy the local public goods 

produced by the organization or firm, which are terms hereafter used interchangeably.  The 

model that follows addresses the question of which organizations will, in additional to their 

normal operations, provide infection-protection services to their members while they are engaged 

with the organization.4  It predicts that the privately-rational prevention activities of 

organizations may reverse their epidemiology fundamentals, with larger organizations that might 

be more dangerous absent prevention ending up safer because of scale economies in prevention 

activities.  A wide range of organizations may ultimately have infection rates below those of the 

smallest organizations, such as households.  In the model, stay-at-home orders are partly 

redundant to individual incentives at the same time that, under testable conditions described 

below, the orders increase aggregate infections. 

 

II.A.  Prevention by an Organization 
The presence of an infectious disease adds infection and prevention costs to the costs of 

the organization’s normal activities.  I assume that the infection costs are proportional to the 

number of people infected, which itself is proportional to the number of pairwise interactions in 

the firm.  Infection rates are reduced by activities that help prevent the transmission of infections 

within the firm.  The maximum number of pairwise interactions is (n-1)n/2 but I assume that 

some of the potential pairwise interactions do not occur, especially in large firms.  Absent 

 
4 The model does not address the formation of new organizations, which may be especially important when 
infections are a serious concern over a long period of time. 
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prevention activities, the actual number of pairwise interactions in a firm sized n is nf(n), with f 

increasing and concave.  f may be close to linear for small n. 

Absent any protection by the organization, the per-member infection costs would be 

vf(n), hereafter “baseline infection costs,” where v converts pairwise interactions into health costs 

(via infections).  The relationship between organization size n and baseline costs is shown in 

Figure 1 as the upper dotted curve.  The parameter v reflects infection rates per interaction 

(related to, among other things, disease prevalence in the community), infection fatality rates, 

and the value of life.  Industries may differ in infection rates with, for example, meat-packing 

businesses and indoor choirs having especially high rates because infections are easily 

transmitted during their normal activities.  Other industries, such as hospitals, may have high 

baseline infection rates even without high transmission rates because infections are especially 

likely to come into the workplace with patients.  Still other industries, such as nursing homes, 

have high v values because (among other things) each infection imposes a greater health cost.  

For brevity, I often refer to v as the “disease-severity” parameter. 
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Figure 1 illustrates the choice to make an organization-wide prevention effort with cost 

c(n) that reduces infection costs from vf(n) to (1-b)vf(n), which is the lower dotted curve in the 

figure.  One of the prevention activities may be to reduce the number of pairwise interactions, for 

example, by maintaining members in cohorts or reducing the number of workers on site.  The 

resulting pairwise interactions are, in my notation, reflected in the product (1-b)f(n); I interpret n 

as the pre-pandemic organization size.  I assume that c(n) increases with group size because at 

least some of the prevention efforts have a per-member element, such as the nuisance of wearing 

masks or being subjected to quarantine. 

Prevention has a cost c(n).  The costs include interruptions of, and resource allocation 

away from, the group’s normal operations.  The costs also include inconveniences experienced 

by members as they participate in group activities that involve prevention protocols.  

Organizational capital accumulated by the group prior to the pandemic may be reflected in 

values of c(n) that are lower than they would be without that capital.  As an example, 

Figure 1.  Equilibrium Prevention
and Organization Size
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organizations may have cultivated a degree of group loyalty.  Especially when group 

membership is voluntary, loyal members are willing to incur some personal costs when they 

expect a corresponding benefit to accrue to the other members or the group as a whole.  In this 

case, c(n) reflects the organization’s costs net of the value that members place on making a 

contribution to the organization.  My notation c(n) emphasizes the relationship between 

prevention costs and organization size n, discussed further below. 

 

II.B.  Economies and diseconomies of scale 
 

 The cost function c(n) reflects potentially important economies of scale in prevention.  

Large organizations can gather larger statistical samples, which are critical when the condition 

being prevented is prevalent in only a small fraction of the population.  A COVID-19 infection 

entered a household of three an average of less than once per year, which makes it impossible for 

a household to infer (before the pandemic is over) from its data alone whether its prevention 

efforts are effective.5  Organizations could pool data, but the organizations might not have 

common measurement instruments or infection rates.  Understanding and trusting data from 

outside sources, or using theory to extrapolate from prior pandemics, are themselves fixed costs. 

A reluctance to use, or a prohibition from using, markets also disadvantages small 

organizations because normally the market is the primary mechanism that the owner of a 

specialized skill services multiple organizations and households.  Take the large organization 

University of Illinois, which developed its own rapid COVID-19 testing operation far beyond the 

capabilities of any one household (Deliso and Bhatt 2020).  Law prohibited the university from 

selling testing services in the marketplace until authorized by the U.S. Food and Drug 

Administration, which was not obtained (and then only on an emergency basis) until February 

24, 2021 (Food and Drug Administration 2021).  By that point, the university had been using the 

test within its organization for almost eight months (Cherney 2020). 

Monitoring compliance with organization rules is an important part of managing local 

externalities and local public goods.  Any prevention effort at the individual level has a benefit 

for the other employees that differs from the individual benefit unless the individual is monitored 

 
5 Throughout the pandemic, daily confirmed cases per person in the U.S. were always less than 1/1000 and often 
less than 1/5000. 
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and faced with reward or punishment.6  Monitoring has elements of economies of scale, such as 

designating specialists to do the monitoring and administer the rewards and punishments.  It can 

help for members to perform their activities in line of sight of each other, which is an economy 

of scale at small group sizes but a diseconomy at large sizes.  In other words, the scale of a firm 

may not only facilitate the discovery of new prevention methods as with the University of 

Illinois but also monitoring the use of well-known prevention techniques.  The household sector 

is at a particular disadvantage with monitoring (across households) because privacy is one of the 

important goods produced by households in free societies. 

For these reasons, and in parallel with the modeling the costs of an organization’s normal 

operations (Viner 1932), I assume that average prevention cost c(n)/n slopes down with n at 

smaller values of n, as illustrated by Figure 1’s green curve.  Figure 1 also allows that average 

cost slopes up at higher values, although that assumption is not needed for many of the results in 

this paper.  Arguably the rising marginal costs that create the u-shape average prevention cost 

have some relation with the rising marginal costs for the organization’s normal operations, so 

that industries that normally have large organizations would have their average prevention costs 

turn up further to the right than in other industries. 

 

II.C.  Rational behavior may invert epidemiology fundamentals 
 

 An organization of size n facing a disease with severity v faces a discrete choice 

min{%&'(&), (1 − -)%&'(&) + /(&)}.  The organizations engaged in prevention efforts are 

sized between n1 and n2 as indicated in Figure 1 where average prevention cost is no more than 

the average prevention benefit.  The equilibrium infection rate is the thick blue curve.  The curve 

slopes up among the smaller organizations for which average prevention costs are too high, from 

the organization’s perspective, to justify prevention.  At size n1, the equilibrium infection rate 

jumps down.  The infection rate for the organization at C is below the rates for those at A and B, 

even though A and B have fewer pairwise interactions per group member and therefore more 

 
6 The monitoring may be probabilistic (Becker 1968, Becker and Stigler 1974).  In firms such has hospitals that 
value a reputation for safety, disease prevention efforts by individual employees (recall that I use employees broadly 
to include customers) also benefit the owners of the firm. 
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favorable epidemiology fundamentals than C does.  In this range, privately rational prevention 

efforts more than offset the epidemiology fundamentals, rendering C the safest of the three. 

At the same time, the pandemic harms C more than it harms A and B because C is the 

only one of the three paying the prevention cost c(n).  Members of A and B are not necessarily 

tempted to join group C, despite C’s being the safest of the three.7  A hospital with COVID 

patients may prove to be safer for healthcare workers than the wider community is, but 

nevertheless be a costly place to work because of unpleasant or disruptive prevention protocols.  

Using A, B, C subscripts to denote the groups, the private cost comparisons are: 

(1 − -)%'(&!) < %'(&") < %'(&#) < (1 − -)%'(&#) +
/(&#)
&#

< (1 − -)%'(&!) +
/(&!)
&!

< %'(&!) 
(1) 

The final inequality says that group C prefers prevention to none.  The second- and third-to-last 

inequalities in (1) show that (i) C is harmed by the pandemic more than B is and (ii) B prefers not 

to engage in the prevention activity.  The first two inequalities show that C is the safest of the 

three. 

Little of C’s harm is a health harm, which is relevant for predicting how an infectious 

disease will spread.  Members of small groups may have too little incentive to participate in 

larger groups – and larger groups too little incentive to attract such individuals – because the 

larger groups are engaged in costly prevention that also benefits the broader population.8  If the 

outside-organization externality from infections is great enough, Group C membership is socially 

preferred to Group B membership even though the private costs of the former are greater than the 

costs of the latter, as shown by the second- and third-to-last inequalities in (1). 

 In drawing Figure 1, I have ruled out solitary confinement where baseline infections 

would be zero.  This assumption is reflected in that, according to the figure, the prevention 

 
7 To the extent that prevention has more scale economies than normal operations, individuals may wish that they had 
formed larger groups before the pandemic. 
8 A social benefit can occur to the extent that members of the large group spend some time in the broader 
population, or that their prevention activities provide some valuable information to other groups considering such 
activities.  It must also rule out situations that can occur at the end of a pandemic where infections have a positive 
externality by putting the population closer to natural herd immunity (Mulligan, Murphy and Topel 2020, Bourne 
2021).  Hereafter I assume that these conditions hold, so that an infection acquired inside an organization would 
have a negative externality on the broader population.  I no longer refer to “externalities” within organizations. 
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activities (masks, temperature checks, etc.) still has an effect at the minimum organization size.  

Having people “stay home” (A) does not necessarily stop infections.  At the same time, homes 

with somewhat more residents (B), such intergenerational living quarters or even nursing homes, 

may not prevent enough to overcome the natural disadvantage of their density. 

 My model focuses on a binary prevention decision by the organization.  It could be 

extended to include multiple prevention decisions, each with its own size threshold n1 that is 

required to privately justify it.  This suggests that organizations with higher fatality rates, 

transmission rates, etc., represented with a greater value for the disease-severity parameter v 

would engage in more prevention, all else the same, than low-v organizations.  A similar result 

would relate organization size to the amount of prevention, at least over the range that average 

costs are falling.  Appendix I shows these results for a continuous-choice version of the model 

with only two organization sizes. 

 

 

II.D.  Staying at home has an externality that changes from positive to negative 
as the disease gets more severe 
 

 If disease severity v were low enough, the Figure 1’s baseline-cost curve, and therefore 

its prevention-benefit curve, would be everywhere below the u-shaped cost curve.  With no 

private incentive to prevent, the equilibrium infection rate curve would coincide with the base-

line cost curve.  Ignoring for the moment how organizations differ in the assortative matching on 

infection status, an individual reallocating time from a large organization to a small one would 

confer a positive externality because smaller organizations would have fewer infections per 

member.  Her individual incentive would be in the same direction, because there would be no 

prevention costs to offset the private infection-cost gradient. 

 As disease severity increases, the baseline-cost curve shifts into a higher position such as 

the one shown in Figure 1, inducing larger organizations to prevent while smaller ones do not.  If 

their prevention is effective enough, as the case shown in Figure 1, then a relatively large 

organization like C has fewer infections per member than A even while the disease creates fewer 

total private costs (infection plus prevention) for A.  The latter comparison shows how the severe 

disease distorts individual choice between A and C in the direction of A, as would be the case 
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with a less severe disease.  However, in Figure 1 individual choice is distorted toward A to avoid 

the costs of prevention, which has a positive externality.  To the extent that stay-at-home orders 

move individuals to A from organizations like C, they are partly redundant to individual 

incentives at the same time that they increase aggregate infections.  

 

II.E.  Super-spreading among the largest groups 
 

 Figure 1 assumes a u-shaped cost curve, which means that prevention costs eventually 

increase on the group-size margin.  As drawn in the figure, they may increase enough to surpass 

the private benefits of prevention.  Therefore a particularly large group may engage in less 

prevention because its high average costs.  Such a group would have an especially high infection 

rate both due to the number f(n) of pairwise interactions in the group and also the lack of 

prevention by comparison to groups sized between n1 and n2. 

 

III. Data and Measurement Framework 
 

The number of new infections at a gathering location during a time interval can be 

decomposed into five components:9 

 

(new	infections)

= (infectious	members) ∗ [1 − (screening	rate)]

∗ (avg	number	of	close	contacts	per	member)

∗ (secondary	attack	rate	per	unit	time) ∗ (duration	of	gathering) 

(2) 

 

The first two terms on the RHS reflect the entry of infectious members into the location at the 

beginning of the time interval, such as a school day.  As indicated in the formula, such entry can 

 
9 This formula infinitesimally exaggerates the infection rate because it assumes that a person could be infected twice 
during the time interval.  Algebraically, it approximates (1-p)p with the infection rate p.  Recall that, for COVID-19, 
prevalence is less than 1/1000. 
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be low either because few members are infectious or because the group screens them before 

entry.10  Infectious members who gain entry (“index cases”) make close contacts (e.g., teachers 

and students who share a classroom), each of whom becomes infected with probability equal to 

the secondary attack rate (SAR) times the duration of contact.11  Prevention activities involve 

some combination of increasing the screening rate, reducing close contacts, or reducing the SAR.  

A small class size is an example of reducing the average number of close contacts.  Masks, 

physical barriers, regulated traffic flows, and pods can reduce the secondary attack rate, which is 

the “probability of onward infection from an index case among a defined group of close 

contacts” (Thompson, et al. 2021).12 

Studies vary according to which components of (2) are measured and the comparability 

of the measures across contexts.13  An ideal study would count within-group infections among 

the same group of people before and after the implementation of organization-wide prevention 

protocols while measuring infections members acquired when they were outside the group.  

Having studies for a single country (say, the U.S.) would also help for comparing across settings.  

In searching Google Scholar and surveys found therein, I found one study close to this ideal 

(Seidelman, et al. 2020), which looked at healthcare workers.  Two other studies of U.S. primary 

and secondary schools, also listed in Table 1, came close to the ideal except in having no 

“before-prevention” data (Zimmerman, et al. 2021, Falk, et al. 2021).  The next-best type of 

study measures infection rates among members of an organization relative to prevalence in their 

local community, falling short of the ideal in failing to specify where members acquired their 

infection.  I found data for these comparisons for meat processors (which is also enough for 

before-after comparisons), on-campus university students, students and staff in primary and 

secondary schools, and airline pilots.  These studies are listed in the second panel of Table 1 and 

discussed on Section V below.  Finally, I included studies that estimated SAR in U.S. households 

 
10 To the extent that households do not deny entry to any of its members, households are unusual in having a zero 
screening rate. 
11 Many epidemiology studies do not emphasize the time dimension, which is a natural part of the economics of the 
problem.  Studies that do investigate time durations find, unsurprisingly, that infections are more likely for long-
duration contacts with an index case (Thompson, et al. 2021). 
12Regulated traffic flows and pods (a.k.a., “quaranteams”) are examples of positive assortative matching, which 
reduces disease transmission on the principle that a person cannot be infected twice (at least not before recovering).  
Assortative matching is treated extensively in economic epidemiology, e.g., Philipson and Posner (1993), Kremer 
(Kremer 1996), and Philipson (2000).  
13 The empirical averages are usefully compared across settings by dividing both sides of (2) by the number of group 
members and the duration of gathering to arrive at per-capita infection rate per unit time. 
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or workplaces.  These also usually included estimates of number of contacts.  Because none of 

the U.S. school studies (recall Figure 3) estimated a SAR, I broadened my article search to 

schools in Europe and Australia.  The SAR studies are listed in Table 1’s third panel. 

 

Table 1.  Studies Measuring Setting-specific COVID-19 Infection or Transmission Rates 
Studies have U.S. subjects unless noted otherwise  
   
Description Time Frame Citation 
      

Worker/student infections traced to source (Figure 3) 
Duke Health workers Mar 15 - Jun 6 Seidelman at al. (2020) 
NC schools Aug 15 - Oct 23 Zimmerman et al. (2021) 
Wood County, WI schools Aug 31 - Nov 29 Falk et al. (2021) 

   
Worker/student infection rates compared to local community (Table 3) 

Meat processing workers Apr 1 - Jul 31 Hernstein et al. (2021) 
On-campus university students Sep 18 - Nov 20 [This paper] 
Primary & secondary students & staff Aug 31 - Nov 22 Mulligan (2021) 
FEDEX pilots Jan - Aug Risher (2020) 

   
Secondary attack rates (Table 4) 

Hair stylists, masked May 12 - May 20 Hendrix et al. (2020) 
Healthcare with PPE January Burke et al. (2020) 
Office workplace January Chu et al. (2020) 
Households March - April Dawson et al. (2020) 
Households March 2 - 12 Rosenberg et al. (2020) 
Households March 22 - April 22 Yousaf et al. (2020) 
Students & staff, Australia March 5 - April 9 Mccartney et al. (2020) 
Students & staff, France Jan 24 - Feb 7 Danis et al. (2020) 
Students & staff, Ireland March 1 - 12 Heavey et al. (2020) 
Students & staff, Italy Sep 1 - Oct 15 Larosa et al. (2020) 

   
Note: All dates are for the year 2020.   
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IV. Large-group prevention activities and their 
possible efficacy 

 

Businesses, schools and other organizations implemented protocols to slow the spread of 

COVID-19 that were rarely, if ever, implemented in households.  For two industries I found 

before-after estimates of either within-organization spread or prevalence among the workforce.  

For other industries, COVID-19 prevalence is measured among the workforce (or student body) 

and compared to prevalence in the surrounding community.  Both the spread data and the 

prevalence data suggest that the prevention efforts worked, or at least that something about the 

organization keeps infection rates below what they are outside the organization.  The study 

authors also emphasized the role of prevention efforts in shaping these outcomes. 

 

IV.A.  Prevention activities by businesses and schools 
 

Table 2 lists the prevention activities I saw cited in the academic articles (Table 1) about 

the spread of COVID-19 within organizations.  Universal masking was cited in all of them, 

although the type of mask cited only in the hospital and hair-stylist context.  Seidelman at al.’s 

(2020) study of Duke Health specifically cited universal masking as defining the before and after 

time periods.  Hospital studies also cited other personal protective equipment such as eye 

protection (Seidelman, et al. 2020, Paltansing, et al. 2021).  Yale University’s Emergency 

Department described “structure[ing] into distinct pods...staggering breaks or using portable 

computers…taping off or removing chairs” and “individually packaged meals” (Sangal, et al. 

2020).  Clinical staff conducted a single exam with “supervising providers present outside the 

room on telephone or at a computer workstation on video.”  Airborne Infection Isolation Rooms 

are not new to hospitals (American Society of Heating, Refrigerating and Air-Conditioning 

Engineers 2020) but many new ones were built during the pandemic (Dyer 2020) as well as 

taking other steps to manage air flow.  Airlines also emphasize air filtering systems (Pombal, 

Hosegood and Powell 2020). 
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Table 2.  Prevention Measures Cited in Papers about Within-organization Spread 
 
Physical barriers 
Universal masking (all organizations studied) 
Other PPE such as eye protection (hospitals) 
Airflow or filtering (hospitals, airlines) 
Other physical barriers (hospitals, food processors) 

 
Positive assortative matching 
Screening/quarantining potentially sick (hospitals, schools, food processors, airlines) 
Pods or limits on interdepartmental contact (hospitals, schools) 
Develop and administer its own testing service (University of Illinois) 

 
Social distancing 
Spacing (hospitals, schools, airlines) 
Closed lunch rooms (hospitals) 
Handshakes prohibited (hospitals) 

 

Organizations also took active steps to separate their uninfected members from the 

infected ones.  Various screening devices were used at worksite entrances, especially by 

hospitals, airlines, and schools.  Hospitals and schools also noted how they put coworkers and 

students in pods and prevented interdepartmental contact, which helps maintain positive 

assortative matching on infection status.  As previously noted, the University of Illinois 

developed and administered its own rapid, saliva-based, test for COVID-19.  Hospitals, schools 

and airlines also noted other steps they took to keep coworkers, patients, clients, and students 

spaced apart. 

Although households likely did not implement many of the prevention protocols cited in 

Table 2, they did reduce their geographic mobility (Chetty, et al. 2020).14  Measures of infection 

rates in the household sector are therefore equilibrium rates that reflect reduced mobility.  

Interpreting the results that follow is therefore facilitated by seeing them in context of household 

mobility.  For that purpose, I display Google Mobility data as Figure 2.  For each week of 2020 

after February 14, it shows the time individuals spent in various locations as compared to the 

time spent in the baseline period January 3 – February 6, 2020. 

 
14 As noted previously, staying away from the workplace may have been an act of prevention early in the pandemic, 
but was likely prevention avoidance later. 
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IV.B.  Employees of Duke Health and meat processors, before and after 
prevention protocols  
 

Figure 3 shows the before-after results for the Duke Health system, which “consists of a 

tertiary care academic hospital, 2 community hospitals, 21,014 HCW, and more than 180 

primary care and specialty clinic practices in 10 counties in North Carolina, providing 

approximately 70,000 inpatient hospitalizations and 2.4 million outpatient visits annually.”  

Between March 15, when Seidelman et al.’s data begins, and April 14, 2020, Duke Health 

observed 1.3 community-acquired infections for every thousand of its healthcare workers 

[HCWs] as compared to 1.2 acquired at work.15  At rates per 100,000 hours present in each 

 
15 Duke Health implemented a universal mask mandate on March 31.  April 14 is two weeks after implementation, 
to allow time for workers acquiring before the mandate to be screened or recovered.  Figure 1 of Seidelman et al. 
(2020) shows a cumulative work-acquired incidence curve that turns sharply between April 7 and April 14. 
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setting, they are 0.37 and 0.62, respectively.16  This is the 1.67 ratio shown in red in Figure 3.17  

Over the next six weeks, the ratio is only 0.31 because work-acquired infections almost stopped 

while community-acquired cases continued as did prevalence in the broader community.  From 

the point of view of being infected with COVID-19, these two ratios suggest that an hour worked 

in the Duke Health system went from being more dangerous than an hour outside work to being 

more than three times safer.  Moreover, that change coincides with implementation of new 

prevention efforts by the employer suggests that those efforts were effective.18  The schooling 

data also displayed in Figure 3 is discussed in the following section of this paper. 

 

 
 

16 I assume 45 weekly hours at work for HCW.  The hours denominator for community-acquired infections are all of 
the remaining waking hours of the week (i.e., what remains from 18 hours per day). 
17 Seidelman et al. (2020) also have a residual category of “unknown-etiology,” which is about the same number of 
cases as the other two categories.  If this unknown category were allocated proportionally between community- and 
work-acquired, the ratios shown in my Figure 3 would not change. 
18 Another study of a hospital in the Netherlands (Paltansing, et al. 2021) measured in-hospital transmission using 
whole-genome sequencing.  It found only one in-hospital transmission after April 30, 2020, which was the seventh 
day after implementing universal masking of healthcare workers.  By comparison, the small sample has 11 
community-acquired cases. Also note that Figure 3’s 0.31 is measured in April and May when household prevention 
efforts were, at least as measured in Figure 2, greater than they would be the rest of the year. 
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Figure 3.  COVID-19 Infections Acquired at Work or School 
as a Ratio to those Acquired in the Community 

Before mitigation protocols + 14 days After mitigation protocols 

Sources: Seidelman et al (2020), Zimmerman et al (2021), Falk et al (2021), Mulligan (2021), author's hours calculations.  
Notes: Before-mitigation school data unavailable.  Each of the four ratios in the chart has the same sample for its numerator as its denominator. 
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In late March 2020, a few governors ordered nursing homes in their states to accept 

COVID-19 patient transfers from hospitals.19  These orders are believed to have accelerated the 

spread of COVID-19 among the elderly (Hammond and Kingsbury 2021).  They are of economic 

interest because of, among other things, the differences in size and prevention efforts between 

nursing homes and hospitals.  Using facility-level data from Centers for Medicare and Medicaid 

Services (2021), I find that the interquartile range for nursing-home employment is 91 to 187 

with an average of 151.20  By comparison, the average employment of a non-teaching hospital 

was more than 600 and the average employment of a teaching hospital more than 1,500 

(Shahian, et al. 2012).  Before the pandemic, nursing homes were routinely cited for infection-

prevention failures, such as failures to screen new employees for infections or failing to isolate 

infected patients (United States Government Accountability Office 2020).  Negative pressure 

rooms were rare in nursing homes.21 

Perhaps due to their relatively small size, a number of nursing home personnel are 

contractors at multiple facilities.  Using anonymized cell phone data, Chen, Chevalier and Long 

(2021) found that the average nursing home facility is connected with seven others through at 

least one cell phone that was present both in the facility and one of the connected facilities.  

Across facilities, their connectedness measure is positively correlated with COVID-19 infection 

rates.  Perhaps, on a per-worker basis, managing infections between work locations is more 

difficult for a smaller business such as a nursing home that relies on outside contractors as 

compared to larger organizations such as hospitals, which actively manage the interdepartmental 

connections within their organization. 

Food processing plants were notorious for spreading COVID-19, partly because “the high 

density of workers required for operations, prolonged close contact of personnel on the 

production line, indoor work environments with compact cafeteria and locker room areas” 

(Herstein, et al. 2021).  Based on their county-level data for the first half of 2020, Taylor, 

 
19 The New York state order is New York Department of Health (2020).  New Jersey’s was Governor Murphy’s 
Executive Order 103. 
20 I assume two employees per resident, which is consistent with the employee-hours-per-resident data shown in the 
CMS data. 
21 Diamond (2020).  The first facility in Pennsylvania to accept COVID patients was much larger than average and 
had just built a negative pressure wing (Miller, et al. 2020).  
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Boulos, and Almond (2020) conclude that “livestock processing poses a particular public health 

risk extending far beyond meatpacking companies and their employees.”  Hernstein et al. (2021) 

measured infections at eleven meat processing facilities in Nebraska before and after facilities 

both mandated masks and installed physical barriers.22  Unlike the Duke Health study, Hernstein 

et al do not distinguish infections acquired at work from those acquired in the community.  

However, I have supplemented their data with surrounding-community data in order to compare 

prevalence among employees with prevalence among community members who are not 

employees as described in Appendix II.  The top two rows of Table 3 shows the results.  Before 

the companies’ mitigation protocols, Nebraska meat-processing employees were being infected 

with COVID-19 at 15 times the rate that other residents of the surrounding counties were.  After 

the protocols, that ratio drops to about three.  Interestingly, the before/after comparison for meat 

processing is a factor of about 5.4 (15.1/2.8) as it is for Duke Health (1.67/0.31).  However, the 

meat-processor infection rate needs to fall even further before it would be below the rate for the 

other residents of the surrounding community.23 

 

  

 
22 The timeframe was April through July 2020.  Including two additional facilities that did not install physical 
barriers, the average employment per facility was 1,675. 
23 Another study of meat processing plants suggests that some of the transmission among meat-processing 
employees occurs outside the plant, such as “shared transportation to and from the workplace, congregate housing, 
and frequent community contact with fellow workers” (Waltenburg, et al. 2020). 
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Table 3.  COVID-19 Prevalence Among Employees or Students Compared to the Surrounding Community 
     

Employer/organization Time frame Community definition 
Infection rate as ratio 

to community's  
Nebraska meat processors, before mitigation Apr 1 - May 17 Other residents of 

surrounding counties 
15.1  

Nebraska meat processors, after mitigation May 18 - July 31 2.8  
     
Univ. of Chicago on-campus students Sep 18 - Nov 20 Chicago 0.09  
Primary and secondary in-person students Aug 31 - Nov 22 U.S. ages 5-17 0.77  

Primary and secondary in-person staff Aug 31 - Nov 22 
Reweighted U.S. age-
specific infections 0.81  

FEDEX pilots Jan - Aug 
Reweighted U.S. age-
specific infections 0.92  

     
Sources: See Table 1.     
Note: Each numerator includes infections that employees or students acquired in the community.  Age-specific infection 
rates are from CDC.  Occupation-specific age distributions are from Jan - Mar Current Population Survey hosted by 
IPUMS.  Both numerators and denominators are expressed per capita. 
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V. Comparisons between homes, businesses, and 
other organizations 

 

Enough data has been published in academic papers to assess infection rates for various 

organizations and compare them to households, without necessarily indicating whether the 

results are due to prevention efforts or other factors.  For these additional organizations this 

section shows either the infection-source results akin to Figure 3, prevalence rates relative to the 

surrounding community akin to Table 3, or rates of within-organization transmission (“secondary 

attack rates”).  All of these sources suggest that unlike some of the food processing plants, many 

businesses and schools have a work environment that is substantially safer than the surrounding 

community. 

 

V.A.  Infections of organization members by source 
 

 Eleven of the North Carolina’s school districts offered in-person schooling and 

participated in the study by Zimmerman et al (2021).  The authors explain how “case 

adjudication of within-school transmission was performed via contact tracing by the local health 

department.”  Of the 77,446 students plus thousands of staff present in person during the study 

period (August 15 through October 23), 773 acquired COVID-19 from the community during 

that period.  The same group of students and staff acquired 32 cases at school.  As explained 

further in Mulligan (2021), I estimate that the average staff and student was, especially due to 

hybrid scheduling, present at school only somewhat more than half of the school days.  Taking a 

full school week to be 30 hours, that puts the average student and staff outside school almost six 

times more hours than they were in school.  Therefore Figure 3 shows a ratio 0.23 for North 

Carolina schools, which is even closer to zero than Duke Health’s.   

The Wood County, Wisconsin study (Falk, et al. 2021) involved about 5,500 students and 

staff attending school in person for at least part of the week.24  Seven cases were acquired in 

 
24 Most of the students and staff were in secondary schools, which Falk et al (2021) define as grades 7-12.  
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school during the study period (August 31 to November 29), as compared to 184 outside.  The 

outside-inside hours ratio is about five because the sample had more full-time schooling than 

North Carolina did.  The inside-outside ratio of hourly infection rates is 0.18, as shown in Figure 

3. 

On an hourly basis, the schools studied were more than four times as safe as the places 

frequented by students and staff when not in school.  By April 14, Duke Health was more than 

three times as safe.25  Figure 3 begins to cast doubt on the hypothesis that regulations or 

subsidies that require or encourage workers to spend more time outside their place of work or 

school help slow the spread of COVID-19.  Rather, it raises the question of whether such actions 

might hasten the spread by keeping people away from prevention measures that large 

organizations use but households do not. 

“Before” COVID-prevention protocol data are not available for North Carolina and 

Wisconsin schools.  An Israeli high school, selected for study because it had an outbreak, was 

conducted without masks or open windows due to hot weather.  The study authors also note 

“crowded classes...distancing among students and between students and teachers was not 

possible” and that “air conditioning functioned continuously in all classes” (Stein-Zamir, et al. 

2020).  The large number of cases occurring in the school suggest that COVID can spread 

rapidly in a school that does not implement prevention measures.26 

 

 

V.B.  Prevalence of employees and students compared with community 
prevalence 
 

 Comparing prevalence among employees or in-person students with the wider 

community (Table 3) confounds the source-specific analysis (Figure 3) with at least two 

additional factors.  One is that employees may be different than other adults, or in-person 

students different than other children their age, in the community in terms of the types of 

 
25 Note that Figure 3, Table 3, and Table 4 (which follows) all adjust for community prevalence in the sense that the 
results shown are unaffected by anything that increases the numerator’s infection rate in the same proportion as the 
denominator’s. 
26 On the other hand, another study of several Irish schools with community-acquired cases (Heavey, et al. 2020) 
found zero in-school transmission early in the pandemic (March 1 through March 12), which presumably preceded 
many prevention efforts that would come later.  
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interactions they have in the community.  This confounding factor might be dwarfed in cases 

where the workplace infection rate is especially different from the community rate, as appears to 

be the case for meat processing plants before their mitigation protocols. 

Another confounding factor is that, as discussed in connection with Figure 3, even in-

person employees and students spend most of their waking time outside their place of work or 

school.  Their prevalence rate is a blend of infection rates at work and rates in the wider 

community with most weight on the latter.  For example, mixing the NC-school relative rate 

shown in Figure 3 (0.23) with the community relative rate (1) with weights 1/6 and 5/6 results in 

a relative prevalence of 0.87.  Mixing the “after” Duke Health rate with weights 1/3 and 2/3 

results in a relative prevalence of 0.77.  Conversely, relative prevalence estimates of 0.8 or 0.9 

may suggest relative source-specific infection rates of about 0.3. 

The second confounding factor is less important for workers or students who spend less 

time in the wider community.  Table 3’s third row is interesting in this regard, because it refers to 

students on a college campus, which is both school and living quarters.  Infection rates among 

on-campus students are measured as part of a surveillance-testing program and therefore pick up 

infections that are not associated with symptoms or obvious close contact with an infected person 

(The University of Chicago 2021).  By contrast, I measure infections in the City of Chicago 

where tests are initiated based on symptoms or possible close contacts.  Nevertheless per-capita 

student infection rates were only nine percent of Chicago’s (City of Chicago 2021).  On-campus 

living quarters are also interesting because of their large scale compared to single-family 

households, intergenerational households, or even nursing homes.27 

Emily Oster (2020a, 2020b) has led a “COVID-19 School Response Dashboard” project 

gathering attendance and prevalence data from participating schools in almost every U.S. state.  

The prevalence measures are only for school students and staff but do not distinguish infections 

acquired in school from those acquired at home or in the community.  For community 

comparison purposes, I use the CDC’s national case counts for the 5-17 years age group.  Oster’s 

 
27 A nursing-home facility typically has less than one hundred residents, and sometimes as few as a dozen (Centers 
for Medicare and Medicaid Services 2021).  As discussed further below, my conceptual framework is about 
organizations with voluntary participation, and therefore does not describe correctional facilities.  An inmate’s 
surplus from living in prison is negative, which means that “threats” to screen out infected persons are by 
themselves an incentive for an inmate to seek infections.  Of course, correctional facilities also have other 
disadvantages when it comes to controlling infectious disease (Williams, et al. 2020). 
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prevalence estimates for in-person students is 77 percent of the prevalence for all persons aged 5-

17.  As discussed above, this may suggest that community-acquired infections of in-person 

students may significantly outnumber school-acquired, even on an hourly basis.  Alternatively, 

or in addition, Oster’s sample of schools may not be representative or in-person students may not 

be representative of other persons their age in terms of infection rates. 

The final row of Table 3 shows results for FEDEX pilots.  Through August 2020, 100 of 

more than 5,000 FEDEX pilots tested positive for COVID-19, according to their pilots’ union 

(Risher 2020).  Reweighting the age-specific infection rates from CDC to reflect the age 

distribution of pilots as indicated in the January through March 2020 Current Population survey, 

I estimate that 2.13 percent of the comparable community was infected, putting the ratio at 0.92.  

This directionally agrees with other studies of airlines that find only a few dozen airline-acquired 

cases out of millions of passenger hours.  As Pombal, Hosegood and Powell (2020) put it, “the 

risk of contracting coronavirus disease 2019 (COVID-19) during air travel is lower than from an 

office building, classroom, supermarket, or commuter train.” 

 

V.C.  Secondary attack rates 
 

The secondary attack rate (SAR) is perhaps the most common context-specific measure 

of COVID-19 infections.  It is the “probability of onward infection from an index case among a 

defined group of close contacts” (Thompson, et al. 2021).  As shown in equation (2), reproduced 

below for the reader’s convenience, the SAR is only part of the overall infection rate.  Other 

parts include the number of close contacts, the rate that infectious members are screened out of 

the group location, and the fraction of group members that are infected.  Of these three, SAR 

studies at most indicate the number of close contacts. 

 

(new	infections)
= (infectious	members) ∗ [1 − (screening	rate)]
∗ (avg	number	of	close	contacts	per	member)
∗ (secondary	attack	rate	per	unit	time) ∗ (duration	of	gathering) 

(2) 
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 Table 4 shows the results from U.S. studies of household or workplace SAR that I found 

on Google Scholar or in surveys cited therein.  Studies of healthcare were excluded unless they 

provided enough information to calculate SAR for healthcare personnel wearing personal 

protective equipment (PPE).28  Because none of the U.S. school studies (recall Figure 3) 

estimated a SAR, I broadened my article search to schools in Europe and Australia.  In six of the 

settings – hair stylists, healthcare with PPE, office workplace, students and staff in France and 

Ireland, and school staff in Italy – zero were infected out of a total of 1,527 close contacts.29  The 

two hair stylists in particular have been widely cited because each of them worked with COVID 

for about eight days and a combined 139 clients, who are obviously within arm’s length for an 

extended period.  Both stylists and clients wore masks, which were either cloth or surgical 

masks. 

 

 
28 In healthcare contexts “close contact” is often defined to be within six feet for several minutes with at least one of 
the parties not wearing a mask (Baker, et al. 2020, Heinzerling, et al. 2020).  Burke et al. (2020) have a healthcare 
sample of close contacts with a mix of PPE dispositions.  By this close-contact definition, estimation of SAR is 
impossible after universal masking.  Conversely, we see that so far studies of healthcare SAR use data from early in 
the pandemic before masking became universal in that sector (e.g., the survey by Thompson, et al. (2021) finding 
four U.S. studies of healthcare SAR, all of which use data from January through March 2020). 
29 Although the Wood County, Wisconsin study does not report numbers of close contacts required for the SAR’s 
denominator, it does note that the numerator is zero among staff in the study.  That is, SAR = 0 for staff in that 
study, as with the studies of schools in Italy, France, and Ireland. 



 25 

Table 4.  Secondary Attack Rates in Various Settings      
        
   Index 

cases 
Close contacts 

per index 
Reproduction 

rate 
SAR 

Occupation/location Country Time Frame Raw per 8 hours 
Hair stylists, masked U.S. May 12 - May 20 2 69.5 0 0 0 
Healthcare with PPE U.S. January 2 81.5 0 0 0 
Office workplace U.S. January 1 11 0 0 0 
Households U.S. March - April 26 2.5 0.62 25.0% 0.89% 
Households U.S. March 2 - 12 155 2.2 0.85 38.2% 1.36% 
Households U.S. March 22 - April 22 N/A [195 contacts] N/A 24.1% 0.86% 
Students Australia March 5 - April 9 9 62.7 0.11 0.2% 0.01% 
School staff Australia March 5 - April 9 9 7.3 0.11 1.5% 0.07% 
Students & staff France Jan 24 - Feb 7 1 86 0 0 0 
Students & staff Ireland March 1 - 12 6 154 0 0 0 
Students Italy Sep 1 - Oct 15 48 20.75 0.79 3.8% 0.19% 
School staff Italy Sep 1 - Oct 15 48 4.25 0 0 0 

        
Sources: See Table 1.        
Note: The reproduction rate is the product of close contacts per index and raw SAR.  Household contact hours are assumed to be 
14 days times 16 hours per day.  School contact hours are assumed to be 3.4 days (avg. presence of index case) times 6 hours per 
day.  
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In contrast, none of the three household studies found zero secondary infections.  The 

pooled household (raw) SAR is 32.2 percent of 602 close contacts.  A small number of 

secondary infections were found among Australian students and staff as well as Italian students.  

In order to compare the nonzero SARs for schools with household SARs, I divided raw SARS by 

an assumed number of contact hours.  For households, I assumed 16 hours per day for a full 14 

days because infections can potentially last two weeks.  For schools, I assumed six hours per day 

for 3.4 days, which is the average number of days that the index cases were present in the 

Australian schools and presumed infectious.  I then multiplied all hourly rates by eight so that the 

numbers were not so small.  Table 4’s final column shows that, even when they are not zero, the 

hourly school SARs are an order of magnitude less than the hourly household SARs. 

On the other hand, Table 4’s close-contact column does confirm at least an element of the 

conventional wisdom, namely that more close contacts are made in schools and workplaces than 

at home.  The household studies show between two and three close contacts whereas the average 

number of close contacts in the nonhousehold contexts averages twenty-five.  From equation 

(2)’s perspective, a factor of ten advantage for households in terms of close contacts is more than 

offset by its higher hourly SAR.  The household disadvantage is further widened to the extent 

that it does not screen out infections as much as the workplaces and schools do. 

 

VI. Conclusions 
 

During China’s Great Leap Forward, villagers were required to manufacture steel in their 

backyards to help their country accelerate its transition to an industrialized nation (Dikötter 

2010).  Non-steel production suffered for lack of inputs, while the resulting steel output proved 

useless.  One reaction is that the villagers should have been more careful with quality control.  

Another is that the efficient scale for steel production, reflecting advantages of specialized 

physical and human capital, is too large for the backyard.  This is one of the first papers to pose 
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the question of whether households also fall short of the efficient scale for preventing infectious 

disease.30 

The model in this paper emphasizes scale economies and diseconomies in both natural 

disease spread and prevention.  More attention could be given to heterogeneity among group 

members in their incentive to stick with the group and the constraints it imposes on members for 

the purpose of managing an additional local externality in the form of infectious disease.  As 

emphasized in the theory of the core, group success comes easier when members enjoy a 

significant surplus from their membership.31  Infection-prevention groups may therefore not form 

anew upon the arrival of a pandemic but rather closely resemble longstanding enterprises that 

maintain some of their previous surplus-creating activities.  Shutting down such enterprises 

amounts to an in-kind tax on disease prevention. 

Micro evidence contradicts the public-health ideal in which households would be places 

of solitary confinement and zero transmission.  Instead, the evidence suggests that “households 

show the highest transmission rates” and that “households are high-risk settings for the 

transmission of [COVID-19].”32  Schools, businesses, and other organizations implemented a 

range of prevention protocols – from adjusting airflow to installing physical barriers to 

monitoring compliance to administering their own testing services – that households did not, and 

perhaps could not.  Something in these organizations greatly reduced the spread, as suggested 

most clearly in the infection-source data from hospitals and health clinics as well as prevalence 

data from meat-processing plants (Figure 3 and Table 2 in this paper).  Infections of in-person 

primary and secondary students and staff were more than twenty times more likely to be traced 

to the community rather than someone else in their school.  COVID-19 prevalence among on-

campus university students, in-person primary and secondary students and staff, and airline pilots 

is observed to be below the prevalence of comparable populations not engaged in these activities.  

 
30 See also Mulligan (2020), which observed in April that “some of the most valuable innovation can be the 
discovery and implementation of ways to reduce infections in the workplace” and that a stay-at-home order “can be 
a significant barrier to these kinds of progress because it closes the workplaces where many of the new practices 
would be administered.”  In more abstract terms, Buchanan and Tullock (1962) observed that “the business firm or 
enterprise is the best single example of an institutional arrangement or device that has as its purpose the 
internalization of external effects” adding that “If care is not taken…, the comparison that will tend to be made is 
between the costs of collectivization on one hand and the costs of purely individual organization on the other, with 
the [business enterprise], and possibly most efficient, alternative being overlooked….”  
31 Telser (1994), Klein and Murphy (2008), Murphy, Snyder and Topel (2014) and Jaffe, et al. (2019). 
32 Thompson, et al. (2021) and Madewell, et al. (2020), respectively. 
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On the comparatively rare occasions when infected persons are present in a school or workplace, 

the close contacts made there are infected rarely enough to more than offset the greater number 

of contacts that are made at work or school as compared to home.  To the extent that these 

findings are due to prevention activities that took organizations time to devise and implement, 

the sign of the public-health effects of stay-at-home orders may have reversed during the first 

few weeks of the pandemic (Figure 3). 

These results apparently contradict what has been assumed in economic models of the 

pandemic.  Eichenbaum, Rebelo and Trabandt (2020) assume that less transmission occurs in 

households based on what was observed during flu seasons, when businesses were not 

implementing any of the prevention measures cited in Table 2.  Kapicka and Rupert (2020) 

calibrate a similar parameter based on a 1997 finding that the majority of personal contacts 

normally occur at work.  Birinci, et al. (2021) quantify the relative safety of households as an 

“internal calibration” exercise, which refers to an effort to match aggregate disease dynamics.  At 

best, the assumptions made by these papers describe how the economy would evolve if 

employers and other organizations did little to reduce the spread at their locations.  They are not 

grounded in either microdata during the pandemic or on any analysis of the differential 

incentives of households and firms to engage in prevention activities. 

Reallocating some of a person’s time from a group with a high average infection rate per 

member per unit time, such as a household, to a large group with a low rate does not necessarily 

confer a positive externality on the broader community.  In theory, at least, averages can differ 

from the marginals relevant for cost-benefit assessments.  For example, if people were normally 

infected at home with just one hour of exposure, reducing home time from 16 hours per day to 

15 does not prevent infection even though that extra hour might be spent in a safer place in terms 

of infection rates per unit time.  With that said, studies do show that longer durations of COVID-

19 exposure, even after several days, do increase the probability of infection. 

Another shortcoming of assessing externalities with organization averages is that 

averages do not reflect the degree of assortative matching that occurs outside the organization.  

Infecting two people at school may increase total community infections less than infecting just 

one if the two exit school into a home where the residents are already infected or immune 

whereas the one goes to a home with susceptible residents.  This is one reason that network 

models are sometimes used both in economics (Karaivanov 2020) and epidemiology (Christley, 
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et al. 2005).  With that said, shifting time to an organization with a zero SAR does confer a 

positive externality on the broader community because it does not introduce any infections into 

the broader community and may avoid an infection from the foregone alternative.  Presumably 

reallocating time to a location with SAR sufficiently close to zero also has a positive externality, 

especially when the outside-group average infection rate is several times greater (Figure 3). 

A pandemic may still distort individual behavior toward households even when, as in 

Figure 1, they are less safe than larger organizations because the latter impose prevention costs 

on members that households do not.  Hospitals intentionally rid themselves of opportunities for 

employees to socialize (Sangal, et al. 2020), which from an employee perspective makes work 

less attractive at the same time that it likely contributes to the low infection rate in hospitals 

compared to the community.  A number of University of Chicago students chose not to return to 

a campus with remarkably low infection rates because on-campus living quarters were more 

heavily regulated than before the pandemic with no commensurate reduction in residential fees.  

These are good examples of how a pandemic can encourage individuals to stay home even while 

public health would be enhanced by spending more time in groups with effective prevention 

protocols. 
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VII. Appendix I: Continuous Prevention Choice 
 

Figure 1 in the main text illustrates a discrete prevention choice from the perspective of 

organizations with a range of sizes.  The purpose of this appendix is to show the analysis for just 

two firm sizes but with a continuous prevention choice, following the excess burden approach 

used by Philipson (1995) and Mulligan (2020).  In that model, firms value their activities, which 

have a normal pre-pandemic cost plus an infection cost during a pandemic.  Here I add that the 

activities generate infections at different rates in large versus small firms because of the potential 

number of pairwise interactions.  As a result, the infection-weighted per-member quantity of 

those activities in their pre-pandemic amounts is greater for the large firm (q4) than for the small 

firm (q3), as shown in Figure A1. 
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As in the main text, the parameter v reflects (up to scale) the private monetary cost of 

each infection.  To the extent that v > 0, the marginal costs of the firm’s activities are greater 

than normal as indicated by the higher of the two horizontal lines in Figure A1.  Each firm 

rationally reduces the number of infections from its activities, with large reducing to q1 from q4 

and small to q2 from q3.  The excess burden of the disease is the opportunity cost of the activities 

that are not conducted normally, which is calculated in the usual way in Figure A1 as areas 

defined vertically between demand and supply curves and horizontally between q1 and q4 and q2 

from q3, respectively. 

Figure A1 assumes that larger firms reduce infections at a higher rate, for the reasons 

discussed in the main text, as represented in the figure by their more elastic demand curve.  Even 

so, if v were small enough, equilibrium infections per member would be greater for the larger 

firm because its rational choice would be close to q4 while the small firm’s choice close to q3 < 

q4.  As drawn in Figure A1, the cost v per infection is great enough that the large firm has fewer 

infections, and therefore lower infection costs, per member than the small firm does.  

Nevertheless, the large firm has greater total private cost, which is the sum of the private 

infection costs and the prevention costs represented as an excess burden.  The difference between 

large- and small-firm total private costs is shown in the figure as the difference between the area 

E and the combined area C + D.  This is the seemingly paradoxical case in which the per-capita 

private costs of participating in large-group activities exceeds the costs of participating in small-

group activities even though the small group activities are less safe.  Still further increases in v 

(not shown in the figure) generates a third case in which the large firm has lower equilibrium 

total private costs than the small firm does. 

To facilitate comparison of Figures 1 and A1, Figure A2 shows the discrete prevention 

case.  The large firm can reduce only to, say, q1 or not at all.  The small firm can only reduce, if 

anything, by the same proportion !!!" = 1 − $.  As drawn, the large firm prefers to prevent.  The 

small firm prefers not to prevent because H + I > F + G + J + K. 
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VIII. Appendix II: Data Related to Nebraska Meat 
Processing Plants 

 
I identified 28 of 93 Nebraska counties, plus one county from South Dakota and three 

from Iowa, within a 15-mile radius of a Nebraska meatpacking plant using the map prepared by 

the Environmental Working Group (2020).33  I reviewed on-line news articles about the 

outbreaks, which reported plant-level prevention activities including mandatory masks, 

workstation dividers, social distancing in breakrooms, and expanded testing.  They also noted 

difficulties in obtaining prevention supplies in April.  Three Nebraska plants were closed, with 

reopenings ranging from May 8 to May 18.  I take May 18 as the beginning of the “after” period 

for the purposes of measuring community prevalence for comparison to plant-employee 

prevalence. 

The 32 counties recorded 11,588 new cases between April 1 and May 17, 2020, of which 

6,015 were in the state of Nebraska through May 6.  Because the Environmental Working Group 

identifies 1,263 Nebraska cases through May 6 as meatpacking workers, I attribute 21 percent 

(=1263/6015) of the 11,588 to meat packing, and the remaining 9,155 cases to other members of 

the community.  The average daily number of new cases during this period is therefore 52 for 

meat packers and 195 for the remaining community in the 32 counties. 

Herstein et al. (2021) found that the eleven meatpacking facilities implementing universal 

masking and workstation dividers had 5.4 times the daily rate of new cases before 

implementation than after.  Applied to the 52 daily cases cited above, that puts the average daily 

number of new cases May 18 – July 31 (“after”) among meat packers in the 32 counties at 10.  

Because average daily cases overall May 18 – July 31 is 202, these estimates imply 193 average 

daily cases for the remaining community in the 32 counties during that period.  These counties 

have about 26,000 meat packing workers and 1,473,000 other residents. 

 
 
  

 
33 The county FIPS codes are 19133, 19149, 19193, 31001, 31025, 31035, 31037, 
31043, 31047, 31051, 31053, 31055, 31063, 31067, 31073, 31079, 31081, 31093, 31109, 31119, 31121, 31131, 311
37, 31141, 31151, 31155, 31159, 31167, 31173, 31177, 31181, and 46127. 
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